check
Prof. Dana Reichmann | Center for Nanoscience and Nanotechnology

Prof. Dana Reichmann

dana
Prof.
Dana
Reichmann
Dept. of Biological Chemistry, The Alexander Silberman Institute of Life Science

Brief Summary of research: 

One of the major focuses in the lab is understanding how cells maintain their “healthy” and complex protein structures during increased oxidation, which is one of the main hallmarks of aging and age-related diseases (e.g., Alzheimer, Parkinson and others). Our overarching goal is to develop a novel technology that will enable us to unravel the mystery of the cellular “redox code” and the way it defines cells and their aging process. To achieve this goal, we utilize and develop an extensive toolbox of technologies which able to quantify changes on cellular and molecular levels. For example, we have developed fluorescence-based sensors, expressed inside cells at different organelles to monitor and quantify precise changes in intracellular oxidation. This allows us to study redox-dependent heterogeneity on a single cell level as well as isolate a subset of cells with pre-defined cellular oxidation for investigation of its proteome and redox-dependent regulation. On a protein level, we have established a toolbox of cutting-edge mass spectrometry technology to map conformational changes in proteins upon interactions and/or oxidation, specifically focusing on structurally challenging proteins, such as large and dynamic protein complexes. These technologies include an automatized, high-resolution platform for conducting Hydrogen/Deuterium exchange coupled with mass spectrometry (HDX-MS), as well as in-vivo and in-vitro crosslinking (XL-MS). Currently, we are the only lab in Israel that the HDX-MS system